Estimates on Fractional Higher Derivatives of Weak Solutions for the Navier-Stokes Equations

Kyudong Choi

U. of Texas

Joint work with Alexis Vasseur

Analysis of incompressible fluids, Turbulence and Mixing In honor of Peter Constantin's 60th birthday. Carnegie Mellon University, Oct,13-16,2011

・ロト ・同ト ・ヨト ・ヨト

Local to global Local study for smooth solutions Nonlocality : weak solutions More nonlocality : fractional derivatives of weak solutions

Navier-Stokes and previous estimates bout higher derivatives Dur main result : $abla^{lpha} u \in ext{weak} \cdot L^{4/(lpha+1)}_{loc}$

Outline

Introduction and the main result

- Navier-Stokes and previous estimates about higher derivatives
- \bullet Our main result : $\nabla^{\alpha} u \in \mathsf{weak}\text{-}L^{4/(\alpha+1)}_{loc}$

2 Local to global

- Why p = 4/(d+1) and why weak- L^p with $\nabla^d u \in$ weak- L^p ?
- CKN theorem and its quantitative variation
- 3 Local study for smooth solutions
 - Converting into a problem with a right parabolic cylinder
- 4 Nonlocality : weak solutions
 - We need a smooth approximation scheme.
 - Difficulities from convective velocity
- More nonlocality : fractional derivatives of weak solutions
 Difficulity from pressure

(日)

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in \text{weak}-L_{loc}^{1/(\alpha+1)}$

We consider 3D Navier-Stokes equations.

$$\partial_t u + (u \cdot \nabla)u + \nabla P - \Delta u = 0$$
 and
div $u = 0, \quad t \in (0, \infty), \quad x \in \mathbb{R}^3$ (1)

with L^2 initial data

$$u_0 \in L^2(\mathbb{R}^3), \quad \text{div} \, u_0 = 0.$$
 (2)

3

Local to global Local study for smooth solutions Nonlocality : weak solutions More nonlocality : fractional derivatives of weak solutions

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in \text{weak}-L_{loc}^{4/(\alpha+1)}$

In this talk, we are looking for an estimate like $\nabla^d u \in L^p_{(t,x)}$, weak- $L^p_{(t,x)} =$ weak- $L^p_t L^p_x$.

э

Local to global Local study for smooth solutions Nonlocality : weak solutions More nonlocality : fractional derivatives of weak solutions

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in {\rm weak}\text{-}L_{loc}^{4/(\alpha+1)}$

In this talk, we are looking for an estimate like $\nabla^d u \in L^p_{(t,x)}$, weak- $L^p_{(t,x)} =$ weak- $L^p_t L^p_x$.

For second derivatives $\nabla^2 u$,

• Parabolic regularization

 $\nabla^2 u \in L^{\frac{5}{4}}$

Local to global Local study for smooth solutions Nonlocality : weak solutions More nonlocality : fractional derivatives of weak solutions

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in \text{weak}-L_{loc}^{4/(\alpha+1)}$

In this talk, we are looking for an estimate like $\nabla^d u \in L^p_{(t,x)}$, weak- $L^p_{(t,x)} =$ weak- $L^p_t L^p_x$.

For second derivatives $\nabla^2 u$,

• Parabolic regularization

$$\nabla^2 u \in L^{\frac{5}{4}}$$

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in {\rm weak}\text{-}L_{loc}^{4/(\alpha+1)}$

In this talk, we are looking for an estimate like $\nabla^d u \in L^p_{(t,x)}$, weak- $L^p_{(t,x)} =$ weak- $L^p_t L^p_x$.

For second derivatives $\nabla^2 u$,

- Parabolic regularization $\nabla^2 u \in L^{\frac{5}{4}}$
- P. Constantin'90 $\nabla^2 u \in L^{\frac{4}{3}-\delta}$ for $\delta > 0$

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in {\rm weak}\text{-}L_{loc}^{4/(\alpha+1)}$

In this talk, we are looking for an estimate like $\nabla^d u \in L^p_{(t,x)}$, weak- $L^p_{(t,x)} =$ weak- $L^p_t L^p_x$.

For second derivatives $\nabla^2 u$,

- Parabolic regularization $\nabla^2 u \in L^{rac{5}{4}}$
- P. Constantin'90 $\nabla^2 u \in L^{\frac{4}{3}-\delta}$ for $\delta > 0$
- P. Lions'96 $\nabla^2 u \in \text{weak-}L^{\frac{4}{3}}(\text{or } L^{\frac{4}{3},\infty})$ assuming that ∇u_0 is a bounded measure.

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in {\rm weak}\text{-}L_{loc}^{4/(\alpha+1)}$

In this talk, we are looking for an estimate like $\nabla^d u \in L^p_{(t,x)}$, weak- $L^p_{(t,x)} =$ weak- $L^p_t L^p_x$.

For second derivatives $\nabla^2 u$,

- Parabolic regularization $\nabla^2 u \in L^{rac{5}{4}}$
- P. Constantin'90 $\nabla^2 u \in L^{\frac{4}{3}-\delta}$ for $\delta > 0$
- P. Lions'96 $\nabla^2 u \in \text{weak-}L^{\frac{4}{3}}(\text{or } L^{\frac{4}{3},\infty})$ assuming that ∇u_0 is a bounded measure.

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in \text{weak}-L_{loc}^{4/(\alpha+1)}$

In this talk, we are looking for an estimate like $\nabla^d u \in L^p_{(t,x)}$, weak- $L^p_{(t,x)} =$ weak- $L^p_t L^p_x$.

For second derivatives $\nabla^2 u$,

- Parabolic regularization $\nabla^2 u \in L^{rac{5}{4}}$
- P. Constantin'90 $\nabla^2 u \in L^{\frac{4}{3}-\delta}$ for $\delta > 0$
- P. Lions'96 ∇²u ∈ weak-L⁴/₃(or L⁴/₃,∞) assuming that ∇u₀ is a bounded measure. (Let f and v₀ be a bounded measure. Let v ∈ L²_(t,x) be a solution of v_t − Δv = f. Then ∇v ∈ weak-L⁴/₃)

- 4 同 6 4 日 6 4 日 6 - 日

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in {\rm weak}\text{-}L_{loc}^{4/(\alpha+1)}$

In this talk, we are looking for an estimate like $\nabla^d u \in L^p_{(t,x)}$, weak- $L^p_{(t,x)} =$ weak- $L^p_t L^p_x$.

For second derivatives $\nabla^2 u$,

- Parabolic regularization $\nabla^2 u \in L^{rac{5}{4}}$
- P. Constantin'90 $\nabla^2 u \in L^{\frac{4}{3}-\delta}$ for $\delta > 0$
- P. Lions'96 $\nabla^2 u \in \text{weak}-L^{\frac{4}{3}}(\text{or } L^{\frac{4}{3},\infty})$ assuming that ∇u_0 is a bounded measure. (Let f and v_0 be a bounded measure. Let $v \in L^2_{(t,x)}$ be a solution of $v_t - \Delta v = f$. Then $\nabla v \in \text{weak}-L^{\frac{4}{3}}$)

For general order derivatives $\nabla^d u$, integer $d \ge 1$,

• A. Vasseur'09 $\nabla^d u \in L_{loc}^{\frac{1}{d+1}-\delta}$ for $\delta > 0$ as long as u is smooth. The estimate depends only on $||u_0||_{L^2(\mathbb{R}^3)}$.

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in {\rm weak}\text{-}L_{loc}^{4/(\alpha+1)}$

For second derivatives $abla^2 u$,

- P. Constantin'90 $\nabla^2 u \in L^{rac{4}{3}-\delta}$ for $\delta>0$
- P. Lions'96(a book) $\nabla^2 u \in \mathsf{weak-}L^{\frac{4}{3}}(\mathsf{or}\ L^{\frac{4}{3},\infty})$

For general order derivatives $\nabla^d u$, integer $d \ge 1$,

• A. Vasseur'09 $\nabla^d u \in L^{\frac{4}{d+1}-\delta}_{loc}$ for $\delta > 0$ as long as u is smooth.

In this talk, we prove

• C., A. Vasseur'11 $\nabla^{\alpha} u \in \text{weak-}L^{\frac{4}{\alpha+1}}_{loc} (\text{or } L^{\frac{4}{\alpha+1},\infty})$ for real $1 < \alpha < 3$ and for weak solution u. (If u is smooth, then $\alpha \geq 3$ also holds.)

・吊 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

Local to global Local study for smooth solutions Nonlocality : weak solutions More nonlocality : fractional derivatives of weak solutions

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in {\rm weak}\text{-}L_{loc}^{4/(\alpha+1)}$

• C., A. Vasseur'11 $\nabla^{\alpha} u \in \text{weak-}L^{\frac{4}{\alpha+1}}_{loc} (\text{or } L^{\frac{4}{\alpha+1},\infty})$ for real $1 < \alpha < 3$ and for weak solution u. (If u is smooth, then $\alpha \geq 3$ also holds.)

Few remarks.

• For any real $\alpha \ge 1$, we define $\nabla^{\alpha} := (-\Delta)^{\frac{\beta}{2}} \nabla^{d}$ for $d \ge 1$ integer and $0 < \beta < 2$ real where $\alpha = d + \beta$.

Local to global Local study for smooth solutions Nonlocality : weak solutions More nonlocality : fractional derivatives of weak solutions

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in {\rm weak}\text{-}L_{loc}^{4/(\alpha+1)}$

• C., A. Vasseur'11 $\nabla^{\alpha} u \in \text{weak-}L^{\frac{4}{\alpha+1}}_{loc} (\text{or } L^{\frac{4}{\alpha+1},\infty})$ for real $1 < \alpha < 3$ and for weak solution u. (If u is smooth, then $\alpha \geq 3$ also holds.)

Few remarks.

- For any real $\alpha \ge 1$, we define $\nabla^{\alpha} := (-\Delta)^{\frac{\beta}{2}} \nabla^{d}$ for $d \ge 1$ integer and $0 < \beta < 2$ real where $\alpha = d + \beta$.
- Let $p := \frac{4}{\alpha+1}$. Then, for any $t_0 > 0$ and any $\alpha \ge 1$, $\|\nabla^{\alpha} u\|_{L^{p,\infty}_t L^{p,\infty}_x [(t_0,T) \times K]}^p \le C_{\alpha} \cdot (\|\nabla u\|_{L^2([(0,T) \times \mathbb{R}^3)]}^2 + \frac{\mathcal{L}_{\mathbb{R}^3}(K)}{t_0}).$

- 4 母 ト 4 ヨ ト - ヨ - りくや

Local to global Local study for smooth solutions Nonlocality : weak solutions More nonlocality : fractional derivatives of weak solutions

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in {\rm weak}\text{-}L_{loc}^{4/(\alpha+1)}$

• C., A. Vasseur'11 $\nabla^{\alpha} u \in \text{weak-}L^{\frac{4}{\alpha+1}}_{loc}$ (or $L^{\frac{4}{\alpha+1},\infty}$) for real $1 < \alpha < 3$ and for weak solution u. (If u is smooth, then $\alpha \geq 3$ also holds.)

Few remarks.

- For any real $\alpha \geq 1$, we define $\nabla^{\alpha} := (-\Delta)^{\frac{\beta}{2}} \nabla^{d}$ for $d \geq 1$ integer and $0 < \beta < 2$ real where $\alpha = d + \beta$.
- Let $p := \frac{4}{\alpha+1}$. Then, for any $t_0 > 0$ and any $\alpha \ge 1$, $\|\nabla^{\alpha} u\|_{L^{p,\infty}_t L^{p,\infty}_x [(t_0,T) \times K]}^p \le C_{\alpha} \cdot (\|\nabla u\|_{L^2([(0,T) \times \mathbb{R}^3)]}^2 + \frac{\mathcal{L}_{\mathbb{R}^3}(K)}{t_0}).$
- $\frac{4}{\alpha+1}$ is optimal and weak space is necessary in our approach.

▲口 ▶ ▲冊 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ●

Local to global Local study for smooth solutions Nonlocality : weak solutions More nonlocality : fractional derivatives of weak solutions

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in {\rm weak}\text{-}L_{loc}^{4/(\alpha+1)}$

• C., A. Vasseur'11 $\nabla^{\alpha} u \in \text{weak-}L^{\frac{4}{\alpha+1}}_{loc}$ (or $L^{\frac{4}{\alpha+1},\infty}$) for real $1 < \alpha < 3$ and for weak solution u. (If u is smooth, then $\alpha \geq 3$ also holds.)

Few remarks.

- For any real $\alpha \ge 1$, we define $\nabla^{\alpha} := (-\Delta)^{\frac{\beta}{2}} \nabla^{d}$ for $d \ge 1$ integer and $0 < \beta < 2$ real where $\alpha = d + \beta$.
- Let $p := \frac{4}{\alpha+1}$. Then, for any $t_0 > 0$ and any $\alpha \ge 1$, $\|\nabla^{\alpha} u\|_{L^{p,\infty}_t L^{p,\infty}_x [(t_0,T) \times K]}^p \le C_{\alpha} \cdot (\|\nabla u\|_{L^2([(0,T) \times \mathbb{R}^3)]}^2 + \frac{\mathcal{L}_{\mathbb{R}^3}(K)}{t_0}).$
- $\frac{4}{\alpha+1}$ is optimal and weak space is necessary in our approach.
- We use a blow up type technique.

▲口 ▶ ▲冊 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ●

Local to global Local study for smooth solutions Nonlocality : weak solutions More nonlocality : fractional derivatives of weak solutions

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in {\rm weak}\text{-}L_{loc}^{4/(\alpha+1)}$

• C., A. Vasseur'11 $\nabla^{\alpha} u \in \text{weak-}L^{\frac{4}{\alpha+1}}_{loc}$ (or $L^{\frac{4}{\alpha+1},\infty}$) for real $1 < \alpha < 3$ and for weak solution u. (If u is smooth, then $\alpha \geq 3$ also holds.)

Few remarks.

- For any real $\alpha \ge 1$, we define $\nabla^{\alpha} := (-\Delta)^{\frac{\beta}{2}} \nabla^{d}$ for $d \ge 1$ integer and $0 < \beta < 2$ real where $\alpha = d + \beta$.
- Let $p := \frac{4}{\alpha+1}$. Then, for any $t_0 > 0$ and any $\alpha \ge 1$, $\|\nabla^{\alpha} u\|_{L^{p,\infty}_t L^{p,\infty}_x [(t_0,T) \times K]}^p \le C_{\alpha} \cdot (\|\nabla u\|_{L^2([(0,T) \times \mathbb{R}^3)]}^2 + \frac{\mathcal{L}_{\mathbb{R}^3}(K)}{t_0}).$
- $\frac{4}{\alpha+1}$ is optimal and **weak** space is necessary in our approach.
- We use a blow up type technique.
- For local study, De Giorgi-type argument will be used

▲口 ▶ ▲冊 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ●

Local to global Local study for smooth solutions Nonlocality : weak solutions More nonlocality : fractional derivatives of weak solutions

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in {\rm weak}\text{-}L_{loc}^{4/(\alpha+1)}$

• C., A. Vasseur'11 $\nabla^{\alpha} u \in \text{weak-}L^{\frac{4}{\alpha+1}}_{loc}$ (or $L^{\frac{4}{\alpha+1},\infty}$) for real $1 < \alpha < 3$ and for weak solution u. (If u is smooth, then $\alpha \geq 3$ also holds.)

Few remarks.

- For any real $\alpha \geq 1$, we define $\nabla^{\alpha} := (-\Delta)^{\frac{\beta}{2}} \nabla^{d}$ for $d \geq 1$ integer and $0 < \beta < 2$ real where $\alpha = d + \beta$.
- Let $p := \frac{4}{\alpha+1}$. Then, for any $t_0 > 0$ and any $\alpha \ge 1$, $\|\nabla^{\alpha} u\|_{L^{p,\infty}_t L^{p,\infty}_x [(t_0,T) \times K]}^p \le C_{\alpha} \cdot (\|\nabla u\|_{L^2([(0,T) \times \mathbb{R}^3)]}^2 + \frac{\mathcal{L}_{\mathbb{R}^3}(K)}{t_0}).$
- $\frac{4}{\alpha+1}$ is optimal and weak space is necessary in our approach.
- We use a blow up type technique.
- For local study, De Giorgi-type argument will be used
- For weak solutions, we need to handle nonlocality of the **convective** velocity.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Local to global Local study for smooth solutions Nonlocality : weak solutions More nonlocality : fractional derivatives of weak solutions

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in \operatorname{weak}-L_{loc}^{4/(\alpha+1)}$

• C., A. Vasseur'11 $\nabla^{\alpha} u \in \text{weak-}L^{\frac{4}{\alpha+1}}_{loc}$ (or $L^{\frac{4}{\alpha+1},\infty}$) for real $1 < \alpha < 3$ and for weak solution u. (If u is smooth, then $\alpha \geq 3$ also holds.)

Few remarks.

- For any real $\alpha \geq 1$, we define $\nabla^{\alpha} := (-\Delta)^{\frac{\beta}{2}} \nabla^{d}$ for $d \geq 1$ integer and $0 < \beta < 2$ real where $\alpha = d + \beta$.
- Let $p := \frac{4}{\alpha+1}$. Then, for any $t_0 > 0$ and any $\alpha \ge 1$, $\|\nabla^{\alpha} u\|_{L^{p,\infty}_t L^{p,\infty}_x [(t_0,T) \times K]}^p \le C_{\alpha} \cdot (\|\nabla u\|_{L^2([(0,T) \times \mathbb{R}^3)]}^2 + \frac{\mathcal{L}_{\mathbb{R}^3}(K)}{t_0}).$
- $\frac{4}{\alpha+1}$ is optimal and weak space is necessary in our approach.
- We use a blow up type technique.
- For local study, De Giorgi-type argument will be used
- For weak solutions, we need to handle nonlocality of the **convective** velocity.
- For fracional derivatives, we encounter nonlocality of pressure.

Local to global Local study for smooth solutions Nonlocality : weak solutions More nonlocality : fractional derivatives of weak solutions

Navier-Stokes and previous estimates about higher derivatives Our main result : $\nabla^{\alpha} u \in \text{weak}-L^{4/(\alpha+1)}_{loc}$

Our main theorem(C., A. Vasseur'11) is the following.

Theorem

There exist universal constants $C_{d,\alpha}$ which depend only on integer $d \ge 1$ and real $\alpha \in [0,2)$ with the following two properties (I) and (II):

(1) Suppose that we have a smooth solution u of (1) on $(0, T) \times \mathbb{R}^3$ for some $0 < T \le \infty$ with some initial data (2). Then it satisfies

$$\|(-\Delta)^{\frac{\alpha}{2}} \nabla^d u\|_{L^{p,\infty}(t_0,T;L^{p,\infty}(K))} \le C_{d,\alpha} \Big(\|u_0\|_{L^2(\mathbb{R}^3)}^2 + \frac{|K|}{t_0}\Big)^{\frac{1}{p}}$$

for any $t_0 \in (0, T)$, any integer $d \geq 1$, any $\alpha \in [0, 2)$ and any bounded open subset K of \mathbb{R}^3 , where $p = \frac{4}{d+\alpha+1}$ and $|\cdot| =$ the Lebesgue measure in \mathbb{R}^3 . (II) For any initial data (2), we can construct a suitable weak solution u of (1) on $(0, \infty) \times \mathbb{R}^3$ such that $(-\Delta)^{\frac{N}{2}} \nabla^d u$ is locally integrable in $(0, \infty) \times \mathbb{R}^3$ for d = 1, 2 and for $\alpha \in [0, 2)$ with $(d + \alpha) < 3$. Moreover, the estimate (1) holds with $T = \infty$ under the same setting of the above part (I) as long as $(d + \alpha) < 3$.

Why p=4/(d+1) and why weak- L^p with $abla^d u\in$ weak- L^p ? CKN theorem and its quantitative variation

Outline

Introduction and the main result

• Navier-Stokes and previous estimates about higher derivatives • Our main result : $\nabla^{\alpha} u \in \text{weak-}L^{4/(\alpha+1)}_{loc}$

2 Local to global

- Why p = 4/(d+1) and why weak- L^p with $\nabla^d u \in \mathsf{weak}$ - L^p ?
- CKN theorem and its quantitative variation
- 3 Local study for smooth solutions
 - Converting into a problem with a right parabolic cylinder
- 4 Nonlocality : weak solutions
 - We need a smooth approximation scheme.
 - Difficulities from convective velocity
- More nonlocality : fractional derivatives of weak solutions
 Difficulity from pressure

(日)

Why p = 4/(d+1) and why weak- L^p with $\nabla^d u \in \text{weak-}L^p$? CKN theorem and its quantitative variation

The origin of $p = 4/(\alpha + 1)$ for $\nabla^{\alpha} u \in \mathsf{weak-}L^p$, $\alpha \ge 1$.

3

Why p = 4/(d+1) and why weak- L^p with $\nabla^d u \in \text{weak-}L^p$? CKN theorem and its quantitative variation

The origin of $p = 4/(\alpha + 1)$ for $\nabla^{\alpha} u \in \mathsf{weak-}L^p$, $\alpha \ge 1$.

• ϵ -scaling : $u_{\epsilon}(t, x) = \epsilon u(\epsilon^2 t, \epsilon x)$

-

The origin of $p=4/(\alpha+1)$ for $\nabla^{\alpha} u\in {\rm weak}\text{-}L^p\text{, }\alpha\geq 1.$

- ϵ -scaling : $u_{\epsilon}(t, x) = \epsilon u(\epsilon^2 t, \epsilon x)$
- We want to use full power of the scaling factor $\frac{1}{\epsilon}$ of $|\nabla u|^2$: $\iint_{Q_1} |\nabla u_{\epsilon}|^2 dx dt = \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla u|^2 dx dt$

Why p=4/(d+1) and why weak- L^p with $\nabla^d \, u \in {\rm weak}\text{-}L^p$? CKN theorem and its quantitative variation

The origin of $p = 4/(\alpha + 1)$ for $\nabla^{\alpha} u \in \mathsf{weak}\text{-}L^p$, $\alpha \geq 1$.

•
$$\epsilon$$
-scaling : $u_{\epsilon}(t, x) = \epsilon u(\epsilon^2 t, \epsilon x)$

• We want to use full power of the scaling factor $\frac{1}{\epsilon}$ of $|\nabla u|^2$: $\iint_{Q_1} |\nabla u_{\epsilon}|^2 dx dt = \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla u|^2 dx dt$

•
$$|\nabla^d u|^p$$
 has the same factor $\frac{1}{\epsilon}$:
$$\iint_{Q_1} |\nabla^d u_{\epsilon}|^p dx dt = \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla^d u|^p dx dt$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

Why p=4/(d+1) and why weak- L^p with $\nabla^d \, u \in {\rm weak}\text{-}L^p$? CKN theorem and its quantitative variation

The origin of $p=4/(\alpha+1)$ for $\nabla^{\alpha} u\in {\rm weak}\text{-}L^p\text{, }\alpha\geq 1.$

•
$$\epsilon$$
-scaling : $u_{\epsilon}(t, x) = \epsilon u(\epsilon^2 t, \epsilon x)$

• We want to use full power of the scaling factor $\frac{1}{\epsilon}$ of $|\nabla u|^2$: $\iint_{Q_1} |\nabla u_{\epsilon}|^2 dx dt = \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla u|^2 dx dt$

•
$$|\nabla^d u|^p$$
 has the same factor $\frac{1}{\epsilon}$:
$$\iint_{Q_1} |\nabla^d u_{\epsilon}|^p dx dt = \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla^d u|^p dx dt$$

• $p = 4/(\alpha + 1)$ is optimal if we use only $|\nabla u|^2 \in L^1_{(t,x)}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why p=4/(d+1) and why weak- L^p with $\nabla^d \, u \in {\rm weak}\text{-}L^p$? CKN theorem and its quantitative variation

Why weak- L^p not just L^p ?

イロト イポト イヨト イヨト

э

• Definition of weak- L^p space: For 0 . $weak-<math>L^p = \{f \text{ measurable} | \sup_{\alpha > 0} (\alpha^p \cdot \mathcal{L}[\{|f| > \alpha\}]) < \infty \}$

- Definition of weak- L^p space: For 0 . $weak-<math>L^p = \{f \text{ measurable} | \sup_{\alpha > 0} \left(\alpha^p \cdot \mathcal{L}[\{|f| > \alpha\}] \right) < \infty \}$
- Chebyshev : $\mathcal{L}[\{|f| > \alpha\}] \leq \frac{\int |f| \, dx}{\alpha}$

- Definition of weak- L^p space: For 0 . $weak-<math>L^p = \{f \text{ measurable} | \sup_{\alpha > 0} \left(\alpha^p \cdot \mathcal{L}[\{|f| > \alpha\}] \right) < \infty \}$
- Chebyshev : $\mathcal{L}[\{|f| > \alpha\}] \leq \frac{\int |f| \, dx}{\alpha}$
- We want to use a blow-up type theorem : $\iint_{Q_1(t,x)} F_{u,P}(s,y) \, dy ds \leq \delta \Rightarrow |u(t,x)| \leq C$

- Definition of weak- L^p space: For 0 . $weak-<math>L^p = \{f \text{ measurable} | \sup_{\alpha > 0} \left(\alpha^p \cdot \mathcal{L}[\{|f| > \alpha\}] \right) < \infty \}$
- Chebyshev : $\mathcal{L}[\{|f| > \alpha\}] \leq \frac{\int |f| \, dx}{\alpha}$
- We want to use a blow-up type theorem : $\iint_{Q_1(t,x)} F_{u,P}(s,y) \, dy ds \leq \delta \Rightarrow |u(t,x)| \leq C$
- If $F_{u,P} \in L^{1}_{(t,x)}$, then we get $\mathcal{L}[\{|u| > C\}] \leq \mathcal{L}[\{\iint_{Q_{1}(t,x)} F_{u,P}(s,y) \, dy ds > \delta\} \leq \frac{1}{\delta} \mathcal{L}[Q_{1}] \|F_{u,P}\|_{L^{1}}$

- Definition of weak- L^p space: For 0 . $weak-<math>L^p = \{f \text{ measurable} | \sup_{\alpha > 0} \left(\alpha^p \cdot \mathcal{L}[\{|f| > \alpha\}] \right) < \infty \}$
- Chebyshev : $\mathcal{L}[\{|f| > \alpha\}] \leq \frac{\int |f| \, dx}{\alpha}$
- We want to use a blow-up type theorem : $\iint_{Q_1(t,x)} F_{u,P}(s,y) \, dy ds \leq \delta \Rightarrow |u(t,x)| \leq C$

• If
$$F_{u,P} \in L^1_{(t,x)}$$
, then we get
 $\mathcal{L}[\{|u| > C\}] \leq \mathcal{L}[\{\iint_{Q_1(t,x)} F_{u,P}(s,y) \, dy ds > \delta\} \leq \frac{1}{\delta} \mathcal{L}[Q_1] \|F_{u,P}\|_{L^1}$

• With ϵ -sclaing, we expect $\mathcal{L}[\{|u| > C/\epsilon\}] \leq \mathcal{L}[\{\frac{1}{\epsilon} \iint_{Q_{\epsilon}(t,x)} F_{u,P}(s,y) \, dy ds > \delta\} \leq \frac{1}{\delta\epsilon} \epsilon^{5} \|F_{u,P}\|_{L^{1}}$

イロト イポト イヨト イヨト 二日

- Definition of weak- L^p space: For 0 . $weak-<math>L^p = \{f \text{ measurable} | \sup_{\alpha > 0} \left(\alpha^p \cdot \mathcal{L}[\{|f| > \alpha\}] \right) < \infty \}$
- Chebyshev : $\mathcal{L}[\{|f| > \alpha\}] \leq \frac{\int |f| \, dx}{\alpha}$
- We want to use a blow-up type theorem : $\iint_{Q_1(t,x)} F_{u,P}(s,y) \, dy ds \leq \delta \Rightarrow |u(t,x)| \leq C$

• If
$$F_{u,P} \in L^{1}_{(t,x)}$$
, then we get
 $\mathcal{L}[\{|u| > C\}] \leq \mathcal{L}[\{\iint_{Q_{1}(t,x)} F_{u,P}(s,y) \, dy ds > \delta\} \leq \frac{1}{\delta} \mathcal{L}[Q_{1}] \|F_{u,P}\|_{L^{1}}$

- With ϵ -sclaing, we expect $\mathcal{L}[\{|u| > C/\epsilon\}] \leq \mathcal{L}[\{\frac{1}{\epsilon} \iint_{Q_{\epsilon}(t,x)} F_{u,P}(s,y) \, dy ds > \delta\} \leq \frac{1}{\delta\epsilon} \epsilon^{5} \|F_{u,P}\|_{L^{1}}$
- weak-L^p is natural.

イロト イポト イヨト イヨト 二日

Why p = 4/(d+1) and why weak- L^p with $\nabla^d u \in \text{weak-}L^p$? CKN theorem and its quantitative variation

Examples of blow-type theorems: $\iint_{Q_1(t,x)} F_{u,P}(s,y) \, dy ds \leq \delta \Rightarrow |u(t,x)| \leq C$

(a)

э

Examples of blow-type theorems: $\iint_{Q_1(t,x)} F_{u,P}(s,y) \, dy ds \leq \delta \Rightarrow |u(t,x)| \leq C$

• L. Caffarelli, R. Kohn and L. Nirenberg'82 proved two local regularity theorems. The first theorem says that (version of F.Lin'98) If $\iint_{Q_1} (|u|^3 + |P|^{\frac{3}{2}}) dxdt \le \delta$, then $|u| \le C$ in $Q_{\frac{1}{2}}$.

- 4 同 2 4 回 2 4 U

Examples of blow-type theorems: $\iint_{Q_1(t,x)} F_{u,P}(s,y) \, dy ds \leq \delta \Rightarrow |u(t,x)| \leq C$

L. Caffarelli, R. Kohn and L. Nirenberg'82 proved two local regularity theorems. The first theorem says that (version of F.Lin'98)
 If ∫∫(|u|³ + |P|^{3/2}) dxdt ≤ δ, then |u| ≤ C in Q_{1/2}.

$$Q_1$$

Examples of blow-type theorems: $\iint_{Q_1(t,x)} F_{u,P}(s,y) \, dy ds \leq \delta \Rightarrow |u(t,x)| \leq C$

• L. Caffarelli, R. Kohn and L. Nirenberg'82 proved two local regularity theorems. The first theorem says that (version of F.Lin'98) If $\iint_{Q_1}(|u|^3 + |P|^{\frac{3}{2}}) dxdt \leq \delta$, then $|u| \leq C$ in $Q_{\frac{1}{2}}$.

Here is another version due to Vasseur'07

• Let p > 1. If $||u||_{L^{\infty}_t L^2_x(Q_0)} + ||\nabla u||_{L^2_t L^2_x(Q_0)} + ||P||_{L^p_t L^1_x(Q_0)} \le \delta_p$, then $|u| \le C$ in $Q_{\frac{1}{2}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Examples of blow-type theorems: $\iint_{Q_1(t,x)} F_{u,P}(s,y) \, dy ds \leq \delta \Rightarrow |u(t,x)| \leq C$

• L. Caffarelli, R. Kohn and L. Nirenberg'82 proved two local regularity theorems. The first theorem says that (version of F.Lin'98) If $\iint_{Q_1} (|u|^3 + |P|^{\frac{3}{2}}) \, dx dt \leq \delta, \text{ then } |u| \leq C \text{ in } Q_{\frac{1}{2}}.$

Here is another version due to Vasseur'07

• Let
$$p > 1$$
.
If $||u||_{L^{\infty}_{t}L^{2}_{x}(Q_{0})} + ||\nabla u||_{L^{2}_{t}L^{2}_{x}(Q_{0})} + ||P||_{L^{p}_{t}L^{1}_{x}(Q_{0})} \le \delta_{p}$,
then $|u| \le C$ in $Q_{\frac{1}{2}}$.

Examples of blow-type theorems: $\iint_{Q_1(t,x)} F_{u,P}(s,y) \, dy ds \leq \delta \Rightarrow |u(t,x)| \leq C$

• L. Caffarelli, R. Kohn and L. Nirenberg'82 proved two local regularity theorems. The first theorem says that (version of F.Lin'98) If $\iint_{Q_1}(|u|^3 + |P|^{\frac{3}{2}}) dxdt \leq \delta$, then $|u| \leq C$ in $Q_{\frac{1}{2}}$.

Here is another version due to Vasseur'07

• Let
$$p > 1$$
.
If $||u||_{L_t^{\infty}L_x^2(Q_0)} + ||\nabla u||_{L_t^2L_x^2(Q_0)} + ||P||_{L_t^pL_x^1(Q_0)} \le \delta_p$,
then $|u| \le C$ in $Q_{\frac{1}{2}}$.

We improve it for p = 1 by adopting a new pressure decomposition, which will be used to get the limit case : weak- L^p instead of $L^{p-\epsilon}$.

・ロト ・同ト ・ヨト ・ヨト

• If
$$\begin{split} \lim_{\epsilon \to 0} \sup_{t} \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla u|^2 \, dx dt \leq \delta, \\ \text{then } u \text{ is regular at } (0,0). \end{split}$$

• If $\lim_{\epsilon \to 0} \sup_{Q_{\epsilon}} \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla u|^2 \, dx dt \leq \delta,$ qualitative then u is regular at (0,0).

(日) (同) (日) (日) (日)

-

• If $\underset{\substack{\epsilon \to 0 \\ \text{ qualitative}}}{\underset{\text{ then } u \text{ is } \underset{\text{ regular }}{\underset{\text{ regular }}{\underset{\text{ then } u \text{ is }}{\underset{\text{ qualitative}}{\underset{\text{ regular }}{\underset{\text{ then } u \text{ is }}{\underset{\text{ regular }}{\underset{\text{ regular }}{\underset{\text{ regular }}{\underset{\text{ then } 0}{\underset{\text{ (0,0)}}{\underset{\text{ regular }}}}}} } } }$

イロト イポト イヨト イヨト

• If $\underset{\epsilon \to 0}{\mathrm{lmsup}} \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla u|^2 \, dx dt \leq \delta,$

then u is regular at (0,0).

• It is not quantitative, but qualitative.

- If $\underset{\epsilon \to 0}{\operatorname{lmsup}} \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla u|^2 \, dx dt \leq \delta,$ then u is regular at (0, 0).
- It is not quantitative, but qualitative.

• If $\limsup_{\epsilon \to 0} \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla u|^2 \, dx dt \le \delta,$

then u is regular at (0,0).

• It is not quantitative, but qualitative.

Can we make it quantitative?

• If $\underset{\epsilon \to 0}{\mathrm{lm}} \sup_{\epsilon} \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla u|^2 \, dx dt \leq \delta,$

then u is regular at (0,0).

• It is not quantitative, but qualitative.

Can we make it quantitative?

More generally, we seek the following type of theorem :

• (???) There exists a (pivot) function $F_{u,P}(\cdot, \cdot) \in L^1((0, \infty) \times \mathbb{R}^3)$ such that

くほし くほし くほし

• If $\underset{\epsilon \to 0}{\mathrm{lim}} \sup_{\epsilon} \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla u|^2 \, dx dt \leq \delta,$

then u is regular at (0,0).

• It is not quantitative, but qualitative.

Can we make it quantitative?

More generally, we seek the following type of theorem :

• (???) There exists a (pivot) function $F_{u,P}(\cdot, \cdot) \in L^1((0, \infty) \times \mathbb{R}^3)$ such that

くほし くほし くほし

• If $\limsup_{\epsilon \to 0} \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla u|^2 \, dx dt \leq \delta$,

then u is regular at (0,0).

• It is not quantitative, but qualitative.

Can we make it quantitative?

More generally, we seek the following type of theorem :

• (???) There exists a **(pivot)** function

$$F_{u,P}(\cdot, \cdot) \in L^1((0, \infty) \times \mathbb{R}^3)$$
 such that
(I) $F_{u,P}$ has same scaling factor $\frac{1}{\epsilon}$ like that of $|\nabla u|^2$:
 $\iint_{Q_1} F_{u_{\epsilon},P_{\epsilon}} dxdt = \frac{1}{\epsilon} \iint_{Q_{\epsilon}} F_{u,P} dxdt$ and

くほし くほし くほし

• If $\limsup_{\epsilon \to 0} \frac{1}{\epsilon} \iint_{Q_{\epsilon}} |\nabla u|^2 \, dx dt \leq \delta$,

then u is regular at (0,0).

• It is not quantitative, but qualitative.

Can we make it quantitative?

More generally, we seek the following type of theorem :

• (???) There exists a **(pivot)** function

$$F_{u,P}(\cdot, \cdot) \in L^1((0, \infty) \times \mathbb{R}^3)$$
 such that
(I) $F_{u,P}$ has same scaling factor $\frac{1}{\epsilon}$ like that of $|\nabla u|^2$:

$$\iint_{Q_1} F_{u_{\epsilon},P_{\epsilon}} dxdt = \frac{1}{\epsilon} \iint_{Q_{\epsilon}} F_{u,P} dxdt \text{ and}$$
(II) If $\iint_{Q_1} F_{u,P} dxdt \le \delta$, then $|u| \le C$ in $Q_{\frac{1}{2}}$.

We achieve a quantitative theorem following a flow

Theorem

Let $0 < \epsilon^2 < t$. Then there exist a function $F_{u,P}(\cdot, \cdot) \in L^1((0, \infty) \times \mathbb{R}^3)$ and a flow $X_u^{(\epsilon,t,x)}(\cdot)$ depending on (ϵ, t, x) such that

(1) $F_{u,P}$ has same scaling factor $rac{1}{\epsilon}$ like that of $|
abla u|^2$ and

(II) If
$$\frac{1}{\epsilon} \iint_{Q_{\epsilon}(t,x)} F_{u,P}(s, y + X_{u}^{(\epsilon,t,x)}(s)) \, dyds \leq \delta$$
,
then $|\nabla^{\alpha}u| \leq C_{\alpha}/\epsilon^{(\alpha+1)}$ in $Q_{\frac{\epsilon}{2}}(t,x)$ for real $\alpha \geq 1$.

• e.g. for smooth u, we take $F_{u,P} = |\nabla u|^2 + |\nabla^2 P|$.

(4月) (4日) (4日) 日

We achieve a quantitative theorem following a flow

Theorem

Let $0 < \epsilon^2 < t$. Then there exist a function $F_{u,P}(\cdot, \cdot) \in L^1((0, \infty) \times \mathbb{R}^3)$ and a flow $X_u^{(\epsilon,t,x)}(\cdot)$ depending on (ϵ, t, x) such that

(1) $F_{u,P}$ has same scaling factor $rac{1}{\epsilon}$ like that of $|
abla u|^2$ and

(II) If
$$\frac{1}{\epsilon} \iint_{Q_{\epsilon}(t,x)} F_{u,P}(s, y + X_{u}^{(\epsilon,t,x)}(s)) \, dyds \leq \delta$$
,
then $|\nabla^{\alpha}u| \leq C_{\alpha}/\epsilon^{(\alpha+1)}$ in $Q_{\frac{\epsilon}{2}}(t,x)$ for real $\alpha \geq 1$.

- e.g. for smooth u, we take $F_{u,P} = |\nabla u|^2 + |\nabla^2 P|$.
- $\int_0^t \int_{\mathbb{R}^3} F_{u,P}(s, y + X_u^{(\epsilon,t,x)}(s)) ds dy = \int_0^t \int_{\mathbb{R}^3} F_{u,P}(s, y) ds dy < \infty$ due to incompressibility of X.

イロト イポト イヨト イヨト 二日

Converting into a problem with a right parabolic cylinder

Outline

Introduction and the main result

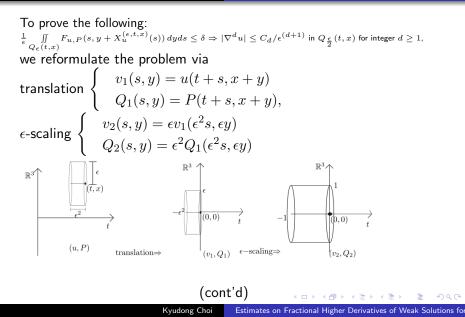
- Navier-Stokes and previous estimates about higher derivatives • Our main result : $\nabla^{\alpha} u \in \text{weak-}L^{4/(\alpha+1)}_{loc}$
- 2 Local to global
 - Why p = 4/(d+1) and why weak- L^p with $\nabla^d u \in$ weak- L^p ?
 - CKN theorem and its quantitative variation
- 3 Local study for smooth solutions
 - Converting into a problem with a right parabolic cylinder
- 4 Nonlocality : weak solutions
 - We need a smooth approximation scheme.
 - Difficulities from convective velocity
- More nonlocality : fractional derivatives of weak solutions
 Difficulity from pressure

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Converting into a problem with a right parabolic cylinder

$$\begin{split} & \text{To prove the following:} \\ & \frac{1}{\epsilon} \iint\limits_{Q_{\epsilon}(t,x)} F_{u,P}(s, y + X_{u}^{(\epsilon,t,x)}(s)) \, dyds \leq \delta \Rightarrow |\nabla^{d}u| \leq C_{d}/\epsilon^{(d+1)} \text{ in } Q_{\frac{\epsilon}{2}}(t,x) \text{ for integer } d \geq 1, \\ & \text{we reformulate the problem via} \\ & \text{translation} \begin{cases} v_{1}(s,y) = u(t+s,x+y) \\ Q_{1}(s,y) = P(t+s,x+y), \\ Q_{1}(s,y) = P(t+s,x+y), \\ e\text{-scaling} \begin{cases} v_{2}(s,y) = \epsilon v_{1}(\epsilon^{2}s,\epsilon y) \\ Q_{2}(s,y) = \epsilon^{2}Q_{1}(\epsilon^{2}s,\epsilon y) \end{cases} \end{split}$$

Converting into a problem with a right parabolic cylinder



Converting into a problem with a right parabolic cylinder

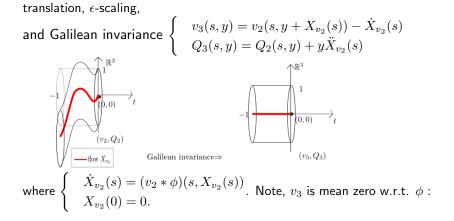
translation, ϵ -scaling,

and Galilean invariance $\left\{ \begin{array}{c} \\ \end{array} \right.$

$$\begin{split} v_3(s,y) &= v_2(s,y + X_{v_2}(s)) - \dot{X}_{v_2}(s) \\ Q_3(s,y) &= Q_2(s,y) + y \ddot{X}_{v_2}(s) \end{split}$$

э

Converting into a problem with a right parabolic cylinder



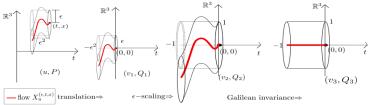
伺 と く ヨ と く ヨ と … ヨ

To prove the following:

 $\frac{1}{\epsilon} \iint_{Q_{\epsilon}(t,x)} F_{u,P}(s, y + X_{u}^{(\epsilon,t,x)}(s)) \, dy ds \leq \delta \Rightarrow |\nabla^{d}u| \leq C_{d}/\epsilon^{(d+1)} \text{ in } Q_{\frac{\epsilon}{2}}(t,x) \text{ for integer } d \geq 1,$

we reformulate the problem via

translation, ϵ -scaling, and Galilean invariance



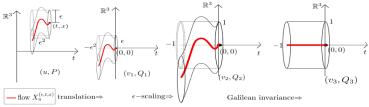
イロト イポト イヨト イヨト 二日

To prove the following:

 $\frac{1}{\epsilon} \iint_{Q_{\epsilon}(t,x)} F_{u,P}(s, y + X_{u}^{(\epsilon,t,x)}(s)) \, dy ds \leq \delta \Rightarrow |\nabla^{d}u| \leq C_{d}/\epsilon^{(d+1)} \text{ in } Q_{\frac{\epsilon}{2}}(t,x) \text{ for integer } d \geq 1,$

we reformulate the problem via

translation, ϵ -scaling, and Galilean invariance



Hence, it is enough to show that if (v, Q) is a solution with mean-zero $\int_{\mathbb{R}^3} v(x)\phi(x)dx = 0$ and if $\iint_{Q_1} F_{v,Q}(s, y) \, dy ds \leq \delta$, then $|\nabla^d v| \leq C_d$ in $Q_{\frac{1}{2}}$ for integer $d \geq 0$. • Hence, it is enough to show that if (v, Q) is a solution with mean-zero $\int_{\mathbb{R}^3} v(x)\phi(x)dx = 0$ and if $\iint_{Q_1} F_{v,Q}(s, y) \, dyds \leq \delta$, then $|\nabla^d v| \leq C_d$ in $Q_{\frac{1}{2}}$ for integer $d \geq 0$.

- Hence, it is enough to show that if (v, Q) is a solution with mean-zero $\int_{\mathbb{R}^3} v(x)\phi(x)dx = 0$ and if $\iint_{Q_1} F_{v,Q}(s, y) \, dyds \le \delta$, then $|\nabla^d v| \le C_d$ in $Q_{\frac{1}{2}}$ for integer $d \ge 0$.
- Thanks to mean-zero property, we can control $||v||_{L^{\infty}L^{2}(Q_{2/3})}$ and $||Q||_{L^{\infty}L^{1}(Q_{2/3})}$ so small that we can apply the local regularity theorem (p = 1 variation of A. Vasseur'07), which can be proved via De Giorgi argument:

If
$$||u||_{L^{\infty}_{t}L^{2}_{x}(Q_{0})} + ||\nabla u||_{L^{2}_{t}L^{2}_{x}(Q_{0})} + ||P||_{L^{1}_{t}L^{1}_{x}(Q_{0})} \le \delta$$
,
then $|\nabla^{d}u| \le C_{d}$ in $Q_{\frac{1}{2}}$ for integer $d \ge 0$.

- Hence, it is enough to show that if (v, Q) is a solution with mean-zero $\int_{\mathbb{R}^3} v(x)\phi(x)dx = 0$ and if $\iint_{Q_1} F_{v,Q}(s, y) \, dyds \le \delta$, then $|\nabla^d v| \le C_d$ in $Q_{\frac{1}{2}}$ for integer $d \ge 0$.
- Thanks to mean-zero property, we can control $||v||_{L^{\infty}L^{2}(Q_{2/3})}$ and $||Q||_{L^{\infty}L^{1}(Q_{2/3})}$ so small that we can apply the local regularity theorem (p = 1 variation of A. Vasseur'07), which can be proved via De Giorgi argument:

$$\begin{split} & \text{If } \|u\|_{L^{\infty}_{t}L^{2}_{x}(Q_{0})} + \|\nabla u\|_{L^{2}_{t}L^{2}_{x}(Q_{0})} + \|P\|_{L^{1}_{t}L^{1}_{x}(Q_{0})} \leq \delta, \\ & \text{then } |\nabla^{d}u| \leq C_{d} \text{ in } Q_{\frac{1}{2}} \text{ for integer } d \geq 0. \end{split}$$

- * 同 * * ヨ * * ヨ * - ヨ

- Hence, it is enough to show that if (v, Q) is a solution with mean-zero $\int_{\mathbb{R}^3} v(x)\phi(x)dx = 0$ and if $\iint_{Q_1} F_{v,Q}(s, y) \, dyds \le \delta$, then $|\nabla^d v| \le C_d$ in $Q_{\frac{1}{2}}$ for integer $d \ge 0$.
- Thanks to mean-zero property, we can control $||v||_{L^{\infty}L^{2}(Q_{2/3})}$ and $||Q||_{L^{\infty}L^{1}(Q_{2/3})}$ so small that we can apply the local regularity theorem (p = 1 variation of A. Vasseur'07), which can be proved via De Giorgi argument:

If
$$||u||_{L^{\infty}_{t}L^{2}_{x}(Q_{0})} + ||\nabla u||_{L^{2}_{t}L^{2}_{x}(Q_{0})} + ||P||_{L^{1}_{t}L^{1}_{x}(Q_{0})} \le \delta$$
,
then $|\nabla^{d}u| \le C_{d}$ in $Q_{\frac{1}{2}}$ for integer $d \ge 0$.

• It finishes the proof for the case *u*:smooth.

伺 と く ヨ と く ヨ と … ヨ

We need a smooth approximation scheme. Difficulities from convective velocity

Outline

Introduction and the main result

• Navier-Stokes and previous estimates about higher derivatives • Our main result : $\nabla^{\alpha} u \in \text{weak-}L^{4/(\alpha+1)}_{loc}$

2 Local to global

- Why p = 4/(d+1) and why weak- L^p with $\nabla^d u \in$ weak- L^p ?
- CKN theorem and its quantitative variation
- 3 Local study for smooth solutions
 - Converting into a problem with a right parabolic cylinder
- 4 Nonlocality : weak solutions
 - We need a smooth approximation scheme.
 - Difficulities from convective velocity
- More nonlocality : fractional derivatives of weak solutions
 Difficulity from pressure

We need a smooth approximation scheme. Difficulities from convective velocity

Let u be a weak solution of (N-S).

(日) (同) (三) (三)

• our argument is based on the following set inclusion:

$$\{\frac{1}{\epsilon} \iint\limits_{Q_{\epsilon}(t,x)} F_{u,p}(s, X_{u}^{(\epsilon,t,x)}(s) \, dy ds \leq \delta\} \subset \{|\nabla^{d}u| \leq \frac{C}{\epsilon^{d+1}}\}$$

which implies

$$\mathcal{L}[\{|\nabla^d u| > \frac{C}{\epsilon^{d+1}}\}] \leq \mathcal{L}[\{\frac{1}{\epsilon} \iint\limits_{Q_{\epsilon}(t,x)} F_{u,p}(s, X_u^{(\epsilon,t,x)}(s) \, dy ds > \delta\}]$$

(日) (同) (三) (三)

• our argument is based on the following set inclusion:

$$\{\frac{1}{\epsilon} \iint\limits_{Q_{\epsilon}(t,x)} F_{u,p}(s, X_{u}^{(\epsilon,t,x)}(s) \, dy ds \leq \delta\} \subset \{|\nabla^{d}u| \leq \frac{C}{\epsilon^{d+1}}\}$$

which implies

$$\mathcal{L}[\{|\nabla^d u| > \frac{C}{\epsilon^{d+1}}\}] \le \mathcal{L}[\{\frac{1}{\epsilon} \iint\limits_{Q_{\epsilon}(t,x)} F_{u,p}(s, X_u^{(\epsilon,t,x)}(s) \, dy ds > \delta\}]$$

(日) (同) (三) (三)

• our argument is based on the following set inclusion:

$$\{\frac{1}{\epsilon} \iint\limits_{Q_{\epsilon}(t,x)} F_{u,p}(s, X_{u}^{(\epsilon,t,x)}(s) \, dy ds \leq \delta\} \subset \{|\nabla^{d}u| \leq \frac{C}{\epsilon^{d+1}}\}$$

which implies

$$\mathcal{L}[\{|\nabla^d u| > \frac{C}{\epsilon^{d+1}}\}] \le \mathcal{L}[\{\frac{1}{\epsilon} \iint\limits_{Q_{\epsilon}(t,x)} F_{u,p}(s, X_u^{(\epsilon,t,x)}(s) \, dy ds > \delta\}]$$

• This argument requires measurability of $abla^d u$,

イロト イポト イラト イラト

• our argument is based on the following set inclusion:

$$\{\frac{1}{\epsilon} \iint\limits_{Q_{\epsilon}(t,x)} F_{u,p}(s, X_{u}^{(\epsilon,t,x)}(s) \, dy ds \leq \delta\} \subset \{|\nabla^{d}u| \leq \frac{C}{\epsilon^{d+1}}\}$$

which implies

$$\mathcal{L}[\{|\nabla^d u| > \frac{C}{\epsilon^{d+1}}\}] \le \mathcal{L}[\{\frac{1}{\epsilon} \iint\limits_{Q_{\epsilon}(t,x)} F_{u,p}(s, X_u^{(\epsilon,t,x)}(s) \, dy ds > \delta\}]$$

- This argument requires measurability of $abla^d u$,
- which we do not know if d > 2.

イロト イポト イラト イラト

Instead we consider an approximation scheme.

• J. Leray'34: for integer $n \ge 1$,

 $\partial_t u + ([u*\phi_{(1/n)}]\cdot\nabla)u + \nabla P - \Delta u = 0 \quad \text{and} \\ \operatorname{div} u = 0,$

イロン 不同 とくほう イロン

Instead we consider an approximation scheme.

• J. Leray'34: for integer $n \ge 1$,

$$\partial_t u + (\underbrace{[u*\phi_{(1/n)}]}_{w_u = \text{convective velocity}} \cdot \nabla) u + \nabla P - \Delta u = 0 \quad \text{and}$$

 $\operatorname{div} u = 0,$

Instead we consider an approximation scheme.

• J. Leray'34: for integer $n \ge 1$,

$$\partial_t u + (\underbrace{[u*\phi_{(1/n)}]}_{w_u = \text{convective velocity}} \cdot \nabla) u + \nabla P - \Delta u = 0 \text{ and}$$
$$\operatorname{div} u = 0,$$

• Now $u \in C^{\infty}$.

イロン 不同 とくほう イロン

Instead we consider an approximation scheme.

• J. Leray'34: for integer $n \ge 1$,

$$\partial_t u + (\underbrace{[u*\phi_{(1/n)}]}_{w_u = \text{convective velocity}} \cdot \nabla) u + \nabla P - \Delta u = 0$$
 and $\operatorname{div} u = 0$,

• Now
$$u \in C^{\infty}$$
.

• To control $w_u := u * \phi_{(1/n)}$ on $B(\epsilon)$, we need u on $B(\epsilon + \frac{1}{n})$.

$$u * \phi_{1/n}$$
 u

- * 同 * * ヨ * * ヨ * - ヨ

We need a smooth approximation scheme. Difficulities from convective velocity

 $\begin{array}{ll} \mbox{Let } (u,P) \mbox{ satisfy } & \partial_t u + ([u*\phi_{(1/n)}]\cdot\nabla)u + \nabla P - \Delta u = 0. \\ \mbox{Apply } \epsilon\mbox{-scaling} & \begin{cases} v(s,y) = \epsilon u(\epsilon^2 s, \epsilon y) \\ Q(s,y) = \epsilon^2 P(\epsilon^2 s, \epsilon y) \end{cases}. \mbox{ Then } (v,Q) \mbox{ satisfies } \end{cases}$

イロト イポト イヨト イヨト 三日

We need a smooth approximation scheme. Difficulities from convective velocity

Let
$$(u, P)$$
 satisfy $\partial_t u + ([u * \phi_{(1/n)}] \cdot \nabla)u + \nabla P - \Delta u = 0.$
Apply ϵ -scaling $\begin{cases} v(s, y) = \epsilon u(\epsilon^2 s, \epsilon y) \\ Q(s, y) = \epsilon^2 P(\epsilon^2 s, \epsilon y) \end{cases}$. Then (v, Q) satisfies

• not $\partial_t v + ([v * \phi_{(1/n)}] \cdot \nabla)v + \nabla Q - \Delta v = 0$,

We need a smooth approximation scheme. Difficulities from convective velocity

Let (u, P) satisfy $\partial_t u + ([u * \phi_{(1/n)}] \cdot \nabla)u + \nabla P - \Delta u = 0.$ Apply ϵ -scaling $\begin{cases} v(s, y) = \epsilon u(\epsilon^2 s, \epsilon y) \\ Q(s, y) = \epsilon^2 P(\epsilon^2 s, \epsilon y) \end{cases}$. Then (v, Q) satisfies • not $\partial_t v + ([v * \phi_{(1/n)}] \cdot \nabla)v + \nabla Q - \Delta v = 0,$ • but $\partial_t v + ([v * \phi_{(\frac{1}{2})}] \cdot \nabla)v + \nabla Q - \Delta v = 0..$

We need a smooth approximation scheme. Difficulities from convective velocity

$$\begin{array}{ll} \mbox{Let }(u,P) \mbox{ satisfy } & \partial_t u + ([u*\phi_{(1/n)}]\cdot\nabla)u + \nabla P - \Delta u = 0 \\ \bullet \mbox{ If we apply ϵ-scaling } \begin{cases} v(s,y) = \epsilon u(\epsilon^2 s,\epsilon y) \\ Q(s,y) = \epsilon^2 P(\epsilon^2 s,\epsilon y) \end{cases} \\ \mbox{ then }(v,Q) \mbox{ satisfies } \end{cases}$$

$$\mbox{not} \qquad \partial_t v + ([v*\phi_{(1/n)}]\cdot\nabla)v + \nabla Q - \Delta v = 0$$

but
$$\partial_t v + (\underbrace{[v * \phi_{(\frac{1}{(n\epsilon)})}]}_{w_n} \cdot \nabla) v + \nabla Q - \Delta v = 0.$$

We need a smooth approximation scheme. Difficulities from convective velocity

$$\begin{array}{ll} (u,P) & : & \partial_t u + \left([u * \phi_{(1/n)}] \cdot \nabla \right) u + \nabla P - \Delta u = 0 \\ (v,Q) & : & \partial_t v + \left(\underbrace{[v * \phi_{1/(n\epsilon)}]} \cdot \nabla \right) v + \nabla Q - \Delta v = 0 \end{array}$$

 w_v

We need a smooth approximation scheme. Difficulities from convective velocity

$$(u, P) : \partial_t u + ([u * \phi_{(1/n)}] \cdot \nabla)u + \nabla P - \Delta u = 0$$

$$(v, Q) : \partial_t v + (\underbrace{[v * \phi_{1/(n\epsilon)}]}_{w_v} \cdot \nabla)v + \nabla Q - \Delta v = 0$$

 For local study (De Giorgi type), we need a uniform local estimate of the scaled convective velocity w_v := [v * φ_{(1/(nv))}].

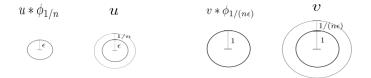
(日) (同) (三) (三)

We need a smooth approximation scheme. Difficulities from convective velocity

$$(u, P) : \partial_t u + ([u * \phi_{(1/n)}] \cdot \nabla)u + \nabla P - \Delta u = 0$$

$$(v, Q) : \partial_t v + (\underbrace{[v * \phi_{1/(n\epsilon)}]}_{w_v} \cdot \nabla)v + \nabla Q - \Delta v = 0$$

- For local study (De Giorgi type), we need a uniform local estimate of the scaled convective velocity w_v := [v * φ_{(1/(x+v))}].
- To control $w_v := v * \phi_{1/(n\epsilon)}$ on B(1), we need v on $B(1 + \frac{1}{n\epsilon})$.



(日)

-

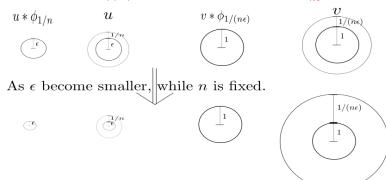
We need a smooth approximation scheme. Difficulities from convective velocity

• To control $w_v := v * \phi_{1/(n\epsilon)}$ on B(1), we need v on $B(1 + \frac{1}{n\epsilon})$.

< ロ > < 同 > < 回 > < 回 > < □ > <

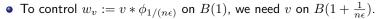
We need a smooth approximation scheme. Difficulities from convective velocity

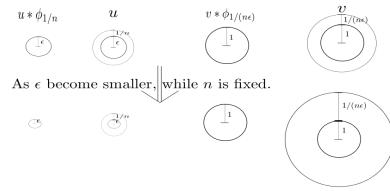
• To control $w_v := v * \phi_{1/(n\epsilon)}$ on B(1), we need v on $B(1 + \frac{1}{n\epsilon})$.



イロト 不得 トイヨト イヨト 二日

We need a smooth approximation scheme. Difficulities from convective velocity





• The scaled convective velocity depends on v too much **nonlocally** as ϵ goes to zero.

イロト 不得 トイヨト イヨト 二日

- For local study (De Giorgi type), we need a uniform local estimate of the scaled convective velocity w_v := [v * φ_(1/2x)].
- The scaled convective velocity depends on v too much nonlocally as ϵ goes to zero.
- We take $F_{u,P} = |\nabla u|^2 + |\nabla^2 P| + \cdots$

イロト 不得 とくほ とくほ とうほう

- For local study (De Giorgi type), we need a uniform local estimate of the scaled convective velocity w_v := [v * φ_(1/2x)].
- The scaled convective velocity depends on v too much nonlocally as ϵ goes to zero.
- We take $F_{u,P} = |\nabla u|^2 + |\nabla^2 P| + \left[\mathcal{M}_x(|\nabla u|)\right]^2$.

- For local study (De Giorgi type), we need a uniform local estimate of the scaled convective velocity w_v := [v * φ_(1/2)].
- The scaled convective velocity depends on v too much nonlocally as ϵ goes to zero.

• We take
$$F_{u,P} = |\nabla u|^2 + |\nabla^2 P| + \left[\mathcal{M}_x(|\nabla u|)\right]^2$$
.

• While the scaled velocity v is mean-zerp, the scaled convective velocity $[v * \phi_{(\frac{1}{(n\epsilon)})}]$ is not mean-zero.

イロト イポト イヨト イヨト 二日

- For local study (De Giorgi type), we need a uniform local estimate of the scaled convective velocity w_v := [v * φ_(1/2ν)].
- The scaled convective velocity depends on v too much nonlocally as ϵ goes to zero.

• We take
$$F_{u,P} = |\nabla u|^2 + |\nabla^2 P| + \left[\mathcal{M}_x(|\nabla u|)\right]^2$$
.

- While the scaled velocity v is mean-zerp, the scaled convective velocity $\left[v * \phi_{\left(\frac{1}{\ln \epsilon}\right)}\right]$ is not mean-zero.
- We need to find a different flow.

イロト イポト イヨト イヨト 二日

Outline

Introduction and the main result

- Navier-Stokes and previous estimates about higher derivatives • Our main result : $\nabla^{\alpha} u \in \text{weak-}L^{4/(\alpha+1)}_{loc}$
- 2 Local to global
 - Why p = 4/(d+1) and why weak- L^p with $\nabla^d u \in$ weak- L^p ?
 - CKN theorem and its quantitative variation
- 3 Local study for smooth solutions
 - Converting into a problem with a right parabolic cylinder
- 4 Nonlocality : weak solutions
 - We need a smooth approximation scheme.
 - Difficulities from convective velocity
- More nonlocality : fractional derivatives of weak solutions Difficulity from processing
 - Difficulity from pressure

Difficulity from pressure

• The fractional Laplacian $(-\Delta)^{\frac{\beta}{2}}$ for $0 < \beta < 2$:

$$\Big[(-\Delta)^{\frac{\beta}{2}}f\Big](x)=P.V.\int_{\mathbb{R}^3}\frac{f(t,x)-f(t,y)}{|x-y|^{3+\beta}}dy$$

イロト イポト イヨト イヨト

Difficulity from pressure

• The fractional Laplacian $(-\Delta)^{\frac{\beta}{2}}$ for $0 < \beta < 2$:

$$\Big[(-\Delta)^{\frac{\beta}{2}}f\Big](x) = P.V.\int_{\mathbb{R}^3}\frac{f(t,x) - f(t,y)}{|x-y|^{3+\beta}}dy$$

• Assume $|\nabla^d u| \leq C$ and $|\nabla^{d+1} u| \leq C$ in Q_1

イロト イポト イヨト イヨト 三日

Difficulity from pressure

• The fractional Laplacian $(-\Delta)^{\frac{\beta}{2}}$ for $0 < \beta < 2$:

$$\left[(-\Delta)^{\frac{\beta}{2}}f\right](x) = P.V.\int_{\mathbb{R}^3}\frac{f(t,x) - f(t,y)}{|x-y|^{3+\beta}}dy$$

- Assume $|\nabla^d u| \leq C$ and $|\nabla^{d+1} u| \leq C$ in Q_1
- Due to nonlocality of $(-\Delta)^{\frac{\beta}{2}}$, we cannot derive directly $|\nabla^{\alpha}u| \leq C$ in Q_1 for $d < \alpha < d + 1$.

- 4 同 6 4 日 6 4 日 6 - 日

Difficulity from pressure

• The fractional Laplacian $(-\Delta)^{\frac{\beta}{2}}$ for $0 < \beta < 2$:

$$\Big[(-\Delta)^{\frac{\beta}{2}}f\Big](x) = P.V. \int_{\mathbb{R}^3} \frac{f(t,x) - f(t,y)}{|x-y|^{3+\beta}} dy$$

- Assume $|\nabla^d u| \leq C$ and $|\nabla^{d+1} u| \leq C$ in Q_1
- Due to nonlocality of $(-\Delta)^{\frac{\beta}{2}}$, we cannot derive directly $|\nabla^{\alpha}u| \leq C$ in Q_1 for $d < \alpha < d + 1$.
- To get $|\nabla^{\alpha} u| \leq C$, we need boundedness of $g(t) := \int_{|y| \geq \frac{1}{2}} \frac{\nabla^d u(t,y)}{|y|^{3+\beta}} dy$,

Difficulity from pressure

• The fractional Laplacian $(-\Delta)^{\frac{\beta}{2}}$ for $0 < \beta < 2$:

$$\left[(-\Delta)^{\frac{\beta}{2}}f\right](x) = P.V.\int_{\mathbb{R}^3}\frac{f(t,x) - f(t,y)}{|x-y|^{3+\beta}}dy$$

- Assume $|\nabla^d u| \leq C$ and $|\nabla^{d+1} u| \leq C$ in Q_1
- Due to nonlocality of $(-\Delta)^{\frac{\beta}{2}}$, we cannot derive directly $|\nabla^{\alpha}u| \leq C$ in Q_1 for $d < \alpha < d + 1$.
- To get $|\nabla^{\alpha} u| \leq C$, we need boundedness of $g(t) := \int_{|y| \geq \frac{1}{2}} \frac{\nabla^d u(t,y)}{|y|^{3+\beta}} dy$,
- To get $g \in L^{\infty}$, we need to use structure of the equation.

イロト イポト イヨト イヨト 二日

Difficulity from pressure

• The fractional Laplacian $(-\Delta)^{\frac{\beta}{2}}$ for $0 < \beta < 2$:

$$\Big[(-\Delta)^{\frac{\beta}{2}}f\Big](x) = P.V. \int_{\mathbb{R}^3} \frac{f(t,x) - f(t,y)}{|x-y|^{3+\beta}} dy$$

- Assume $|\nabla^d u| \leq C$ and $|\nabla^{d+1} u| \leq C$ in Q_1
- Due to nonlocality of $(-\Delta)^{\frac{\beta}{2}}$, we cannot derive directly $|\nabla^{\alpha}u| \leq C$ in Q_1 for $d < \alpha < d + 1$.
- To get $|\nabla^{\alpha} u| \leq C$, we need boundedness of $g(t) := \int_{|y| \geq \frac{1}{2}} \frac{\nabla^d u(t,y)}{|y|^{3+\beta}} dy$,
- To get $g \in L^{\infty}$, we need to use structure of the equation.
- As a result , non-local information of $\nabla^2 P$ is required.

イロト イポト イヨト イヨト 二日

Difficulity from pressure

• We want to capture non-local information of $\nabla^2 P$.

< ロ > < 同 > < 回 > < 回 > < □ > <

Difficulity from pressure

- We want to capture non-local information of $\nabla^2 P$.
- Due to $\nabla^2 P \in L^1_t L^1_x$, Maximal function $\sup_{\delta>0} \left(\phi_{\delta} * |\nabla^2 P|\right)$ of $\nabla^2 P$ lies not in L^1 but in weak- L^1 .

(日)

-

Introduction and the main result	
Local to global	
Local study for smooth solutions	D
Nonlocality : weak solutions	
More nonlocality : fractional derivatives of weak solutions	

- We want to capture non-local information of $\nabla^2 P$.
- Due to $\nabla^2 P \in L^1_t L^1_x$, Maximal function $\sup_{\delta>0} \left(\phi_{\delta} * |\nabla^2 P|\right)$ of $\nabla^2 P$ lies not in L^1 but in weak- L^1 .
- We use ∇²P ∈ H(Hardy space) which implies sup_{δ>0} |φ_δ * ∇²P| ∈ L¹.
 (R. Coifman, P. Lions, Y. Meyer, and S. Semmes)

b 4 3 b 4 3 b

Introduction and the main result	
Local to global	
Local study for smooth solutions	D
Nonlocality : weak solutions	
More nonlocality : fractional derivatives of weak solutions	

- We want to capture non-local information of $\nabla^2 P$.
- Due to $\nabla^2 P \in L^1_t L^1_x$, Maximal function $\sup_{\delta>0} \left(\phi_{\delta} * |\nabla^2 P|\right)$ of $\nabla^2 P$ lies not in L^1 but in weak- L^1 .
- We use ∇²P ∈ H(Hardy space) which implies sup_{δ>0} |φ_δ * ∇²P| ∈ L¹.
 (R. Coifman, P. Lions, Y. Meyer, and S. Semmes)
- It plays a similar role of Maximal function.

Difficulity from pressure

Thank you.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э